Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models
نویسنده
چکیده
In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.
منابع مشابه
Scalar transport in a turbulent jet
Communicated by D.B. Spalding) A model equation for the scalar dissipation rate, based on the Two Scale Direct Interaction Approximation (TSDIA) of Yoshizawa [1J was solved and applied to a turbulent round jet in conjunction with turbulence modelling based on the eddy viscosity and diffusivity. The model coefficients were adjusted by using a similarity analysis for the round jet. This led to an...
متن کاملA stochastic extension of the explicit algebraic subgrid-scale models
Articles you may be interested in Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of passive-scalar mixing in turbulent flow at low and high Schmidt numbers The physics of energy transfer toward improved subgrid-scale models A hybrid subgrid-scale model constrained by Reynolds stress A dynamic subgrid-scale eddy viscosity model with a global ...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملA New Scalar Reynolds Stress Model For Non-Isothermal Wall Bounded Turbulent Flows
The present investigation concerns the development of advanced scalar turbulence modeling approaches and their application to the calculation of non-isothermal wall-bounded flow phenomena. A new scalar modeling technique based on scalar turbulent scales is proposed and implemented at a second-order modeling approach. Instead of the classical analogy concept between the mechanical and the scalar...
متن کاملElementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum and intermittency.
This paper motivates, develops and reviews elementary models for turbulent tracers with a background mean gradient which, despite their simplicity, have complex statistical features mimicking crucial aspects of laboratory experiments and atmospheric observations. These statistical features include exact formulas for tracer eddy diffusivity which is non-local in space and time, exact formulas an...
متن کامل